新能源汽车电机驱动系统关键技术展望

文章正文
发布时间:2024-12-05 13:50

本文探讨了新能源汽车电机驱动系统的关键技术及发展趋势,包括驱动控制器中的功率半导体器件及封装、智能门极驱动、基于器件的系统集成设计,以及驱动电机中的扁铜线、多相永磁电机、永磁同步磁阻电机等关键技术。其中,着重介绍了当前车用电机驱动技术的发展趋势,并指出永磁同步电机在未来10 年内将依然是新能源汽车市场的主流驱动电机。同时,通过横向比较指出当前我国在驱动电机发展道路上所面临的关键问题,可以为我国未来新能源汽车技术发展提供一定参考。

Abstract

This study investigates key technologies and development trends for the motor drive system of new energy vehicles, including power semiconductor devices and their packaging, smart gate drivers, and the device-based system integration design, for the drive controllers; it also explores new motor technologies related to the hair-pin winding, multiphase permanent motor, and permanent magnet synchronous reluctance motor. The study emphatically presents the development trends of the motor drive technologies for vehicles, and points out that permanent magnet synchronous motors will remain the main-stream drive motors in the new energy vehicle market within the next 10 years. Meanwhile, this study reveals several key issues existing in drive motor development, which could offer a reference for the technology development of new energy vehicles in China.

关键词

/ /

Keywords

/ /

引用本文

EndNote

Ris (Procite)

Bibtex

导出引用

丁荣军, 刘侃. 新能源汽车电机驱动系统关键技术展望. 中国工程科学. 2019, 21(3): 56-60 https://doi.org/10.15302/J-SSCAE-2019.03.018

0">

{{custom_sec.title}}

=2"> {{custom_sec.title}}

{{custom_sec.content}}

参考文献

| |

[[1]]  

温旭辉, 宁圃奇, 孟金磊, 等. 车用大功率电力电子器件研究进 展 [J]. 科技导报, 2016, 34(6): 69–73. Wen X H, Ning P Q, Meng J L, et al. Research progress of high power electronic devices for vehicles [J]. Science & Technology Review, 2016, 34(6): 69–73.

 
[[2]]  

焦明亮, 李云, 朱世武, 等. IGBT 门极驱动技术现状和发展趋势 [J]. 大功率变流技术, 2015 (2): 18–23. Jiao M L, Li Y, Zhu S W, et al. Status and trend of IGBT gate drive technology [J]. High Power Converter Technology, 2015 (2): 18–23.

 
[[3]]  

Jiao M L, Li Y, Yu J, et al. Intelligent power module featuring optimised active gate driver and IGBT module integration for electric vehicle application [R]. Dresden: The 7th Electronic System-Integration Technology Conference (ESTC), 2018.

 
[[4]]  

李云, 朱世武, 吴春冬, 等. 电动汽车电机控制器的发展 [J]. 大 功率变流技术, 2015 (2): 12–17. Li Y, Zhu S W, Wu C D, et al. The development of motor controller for electric vehicles [J]. High Power Converter Technology, 2015 (2): 12–17.

 
[[5]]  

International Organization for Standardization, ISO 26262: Road vehicles–functional safety [S]. 2018.

 
[[6]]  

ZVEI. Handbook for robustness validation of automotive electrical/electronic modules [R]. Frankfwrt: ZVEI , 2013.

 
[[7]]  

Fujita M, Kabata Y, Tokumasu T, et al. Circulating currents in stator coils of large turbine generators and loss reduction [J]. IEEE Transactions on Industry Applications, 2009, 45(2): 685– 693.

 
[[8]]  

Liang Y, Wu L, Bian X, et al. Influence of void transposition structure on the leakage magnetic field and circulating current loss of stator bars in water-cooled turbo-generators [J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3389–3396.

 
[[9]]  

Levi E, Bojoi R, Profumo F, et al. Multiphase induction motor drives—A technology status review [J]. IET Electric Power Applications, 2007, 1(4): 489–516.

 
[[10]]  

张军, 肖倩, 孟庆阔. 新能源汽车驱动电机发展现状及趋势分析 [J]. 汽车工业研究, 2018 (6): 43–47. Zhang J, Xiao Q, Meng Q K. Development status and trend analysis of new energy vehicle drive motors [J]. Automotive Industry Research, 2018 (6): 43–47.

 
[[11]]  

杨金波, 杨贵杰, 李铁才. 双三相永磁同步电机的建模与矢量控 制 [J]. 电机与控制学报, 2010, 14(6): 1–7. Yang J B, Yang G J, Li T C. Modeling and vector control for dual three-phase PMSM [J]. Journal of Electric Machines and Control, 2010, 14(6): 1–7.

 
[[12]]  

Ren Y, Zhu Z Q. Enhancement of steady-state performance in direct torque controlled dual-three phase permanent magnet synchronous machine drives with modified switching table [J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3338– 3350.

 
[[13]]  

Bonthu S S R, Choi S, Baek J. Design optimization with multiphysics analysis on external rotor permanent magnet-assisted synchronous reluctance motors [J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 290–298.

 
[[14]]  

Pei Y, Wang Q, Bi Y, et al. A novel structure of axial flux permanent magnet synchronous machine with high torque density for electrical vehicle applications [R]. Beijing: IECON 2017–43rd Annual Conference of the IEEE Industrial Electronics Society, 2017.

 
[[15]]  

Pop C V, Fodorean D. In-wheel motor with integrated magnetic gear for extended speed applications [R]. Anacapri: International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2016.

 
[[16]]  

Zhu Y Y, Yang C T, Yue Y, et al. Design and optimisation of an in-wheel switched reluctance motor for electric vehicles [J]. IET Intelligent Transport Systems, 2019, 13(1): 175–182.

 
[[17]]  

Zhang Z, Li G, Qian Z, et al. Research on effect of temperature on performance and temperature compensation of interior permanent magnet motor [R]. Hefei: IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2016.

 
[[18]]  

Cho S, Shin W, Park J, et al. A torque compensation control scheme of PMSM considering wide variation of permanent magnet temperature [J]. IEEE Transactions on Magnetics, 2019, 55(2): 1–5.